A comparison among the main approaches for knowledge representation using an underlying semantic network. | Feature | RDF | RDFS | OWL | RIF Core | RSHP | |----------------------|---|--|---|---|--| | Full Name | Resource Description
Framework | Resource Description
Framework Scheme | Ontology Web
Language | Rule Interchange
Format | Relationship | | First Version | 1.0 (February 2004) | 1.0 (February 2004) | 1.0 (February 2004) | First edition (December 2012) | v1 (January 2004) | | Last version | 1.1 (February 2014) | 1.1 (February 2014) | 2.0 (December 2012) | Second edition
(February 2013) | v14 (January 2015) | | Designed for | Representation of logical statements | Data modeling vocabulary for RDF data | Formal ontology design | Definition of Horn
rules | Representation of relationships between knowledge items | | Target use | Data exchange of facts, rules and ontologies | Data model | Ontology creation | Rule interchange | Universal knowledge representation and re-use | | Data model | Directed graph | Directed graph | Directed graph | Object Model | Undirected (property)
graph | | Underlying semantics | RDF formal semantics | RDFS Semantics | OWL 2. Direct
Semantics and RDF-
based Semantics | RIF Core Semantics | Explicit metamodel | | Expressivity | Simple RDF triples (s, p, o) to represent binary relationthips. | Classes (sub and super classes) and Properties (domain and ranges) | OWL 1.1: DL (Description Logic), Lite, Full OWL 2.0: EL (Expressions Language) QL (Query Language) RL (Rule Language) | RIF-Core (Core Dialect) RIF-BLD (Basic Logic Dialect) RIF-PRD (Production Rule Dialect) RIF-FLD (Framework for Logic Dialects) RIF-OWL 2 RL and RIF RDF RIF XML | Any kind of relationship (SVP). N-ary relationships. Non logic formalism. Knowledge containers. (reification) | | Validation | RDF Data Shapes: OSLC Resource Shapes, SHACL (Shapes Constraint Language) SheX (Shape Expressions) SPIN (SPARQL Inferencing Notation) and SPARQL Rules | Semantic reasoning + see
RDF | Semantic reasoning
+ see RDF | Metamodel conformity | Metamodel conformity | | Inference | Not at graph level. | Yes but restricted to type inference and super/sub | Yes depending on the underlying logic | Yes | Not at graph level. | | | | classes and properties | formalism: First Order
Logic, F-Logic, DL,
etc. | | | |------------------|---|--|---|---|---| | Identifiers | URIs (HTTP URIs if
Linked Data).
Unique Name
Assumption (UNA). | See RDF | See RDF | Internal IDs and UNA. | Internal IDs and UNA. | | Access protocol | HTTP-based (REST resources) | See RDF | See RDF | See RDF and native APIs | Native API | | Query language | SPARQL and RDQL | See RDF | SWRL | XPATH (if XML is used as serialization format) | RSHP query language | | Storage | RDF repository (native
RDF repositories, graph-
based databases, and
wrappers on top of existing
relational databases) | See RDF | See RDF | Native API | SQL or NonSQL database | | Formats (syntax) | RDF/XML, JSON,
Turtle, N3, Manchester | See RDF | See RDF | XML | RDF/XML, ISO 25964-
"The international standard
for thesauri and
interoperability with other
vocabularies", etc. | | Visualization | RDF visualization
libraries such as Allegro
graph or RDFgravity and
other general-purpose graph
visualization frameworks
Graphviz, Touchgraph,
Gephi, Cytoscape, D3.js. | See RDF | See RDF | Native Rule IDEs | RSHP visualization language and the aforementioned general-purpose graph visualization frameworks. | | Application | Integration of databases, applications and services through a common and shared data model. | See RDF | See RDF | Interchange of business rules and connection with existing ontologies | Semantics-based information retrieval using a natural language interface to support other services such as traceability or quality. | | Status | W3C recommendation | W3C recommendation | W3C recommendation | W3C recommendation | Industry-oriented | | Tools | Protégé, SWOOP or
Terminae, (ontology
editors) | See RDF and RDFS
reasoners such as Pellet,
Racer or Jess | See RDFS | JRules, Drools or Jess
(mainly exporters not
importers) | knowledgeMANAGER (a
complete suite for knowledge
management with RDF
import/export capabilities) |